Low glucose induces mitochondrial reactive oxygen species via fatty acid oxidation in bovine aortic endothelial cells
نویسندگان
چکیده
AIMS/INTRODUCTION Overproduction of reactive oxygen species (ROS) in endothelial cells (ECs) plays a pivotal role in endothelial dysfunction. Mitochondrial ROS (mtROS) is one of the key players in the pathogenesis of diabetic vascular complications. Hypoglycemia is linked to increased ROS production and vascular events; however, the underlying mechanisms remain unclear. In the present study, we aimed to determine whether and how low glucose (LG) mediates mtROS generation in ECs, and to examine the impact of LG-induced mtROS on endothelial dysfunction. MATERIALS AND METHODS Metabolomic profiling, cellular oxygen consumption rate, mtROS, endothelial nitric oxide synthase phosphorylation, and the expression of vascular cell adhesion molecule-1 or intercellular adhesion molecule-1 were evaluated in bovine aortic ECs. RESULTS We found that LG increased mtROS generation in ECs; which was suppressed by overexpression of manganese superoxide dismutase. Comprehensive metabolic analysis using capillary electrophoresis-mass spectrometry and oxygen consumption rate assessment showed that the pathway from fatty acid to acetyl-CoA through fatty acid oxidation was upregulated in ECs under LG conditions. In addition, etomoxir, a specific inhibitor of the free fatty acid transporter, decreased LG-induced mtROS production. These results suggested that LG increased mtROS generation through activation of fatty acid oxidation. We further revealed that LG inhibited endothelial nitric oxide synthase phosphorylation, and increased the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. These effects were suppressed either by overexpression of manganese superoxide dismutase or by treatment with etomoxir. CONCLUSIONS The activation of fatty acid oxidation followed by mtROS production could be one of the causes for endothelial dysfunction during hypoglycemia.
منابع مشابه
Endothelial Cell and Platelet Bioenergetics: Effect of Glucose and Nutrient Composition
It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial...
متن کاملLeptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A.
Leptin, a circulating hormone secreted mainly from adipose tissues, is involved in the control of body weight. The plasma concentrations are correlated with body mass index, and are reported to be high in patients with insulin resistance, which is one of the major risk factors for cardiovascular disease. However, the direct effect of leptin on vascular wall cells is not fully understood. In thi...
متن کاملPhysiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells.
Decreased uncoupling protein (UCP)3 is associated with insulin resistance in muscle of pre-diabetic and diabetic individuals, but the function of UCP3 remains unclear. Our goal was to elucidate mechanisms underlying the negative correlation between UCP3 and insulin resistance in muscle. We determined effects of physiologic UCP3 overexpression on glucose and fatty acid oxidation and on mitochond...
متن کاملHow to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation.
Oxygen radical formation in mitochondria is an incompletely understood attribute of eukaryotic cells. Recently, a kinetic model was proposed, in which the ratio between electrons entering the respiratory chain via FADH2 or NADH determines radical formation. During glucose breakdown, the ratio is low; during fatty acid breakdown, the ratio is high (the ratio increasing--asymptotically--with fatt...
متن کاملRedox cycling of diaspirin cross-linked hemoglobin induces G2/M arrest and apoptosis in cultured endothelial cells.
It is hypothesized that oxidative reactions of hemoglobin driven by reactive oxygen species in the vasculature lead to endothelial cell injury or death. Bovine aortic endothelial cells were incubated with diaspirin cross-linked hemoglobin (DBBF-Hb), developed as a hemoglobin-based oxygen carrier, and hydrogen peroxide (H(2)O(2)), generated by the glucose oxidase system. The low steady flux of H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017